IEEE 802.11s

IEEE 802.11s is a wireless LAN standard and an IEEE 802.11 amendment for mesh networking, defining how wireless devices can interconnect to create a wireless LAN (WLAN) mesh network, which may be used for relatively fixed (not mobile) topologies and wireless ad hoc networks. The IEEE 802.11s task group drew upon volunteers from university and industry to provide specifications and possible design solutions for wireless mesh networking. As a standard, the document was iterated and revised many times prior to finalization.

802.11 are a set of IEEEstandards that govern wireless networking transmission protocols. They are commonly used today to provide wireless connectivity in the home, office and some commercial establishments.

The IEEE page for 802.11s lists that specification as superseded and is now part of the IEEE 802.11 standard.[1]

. . . IEEE 802.11s . . .

802.11s extends the IEEE 802.11 MAC standard by defining an architecture and protocol that supports both broadcast/multicast and unicast delivery using “radio-aware metrics over self-configuring multi-hop topologies.”

802.11s inherently depends on one of 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, or 802.11ax to carry the actual traffic. One or more routing protocols suitable to the actual network physical topology are required. 802.11s requires the Hybrid Wireless Mesh Protocol, or HWMP[2] to be supported as a default. However, other mesh, ad hoc (Associativity-Based Routing, Zone Routing Protocol, and location based routing) or dynamically link-state routed (OLSR, B.A.T.M.A.N.[citation needed], OSPF) may be supported or even static routing (WDS). See the more detailed description below comparing these routing protocols.

A mesh often consists of many small nodes. When mobile users or heavy loads are concerned, there will often be a handoff from one base station to another, and not only from 802.11 but from other (GSM, Bluetooth, PCS and other cordless phone) networks. Accordingly, IEEE 802.21, which specifies this handoff between nodes both obeying 802.11s and otherwise, may be required. This is especially likely if a longer-range lower-bandwidth service is deployed to minimize mesh dead zones, e.g. GSM routing based on OpenBTS.

Mesh networking often involves network access by previously unknown parties, especially when a transient visitor population is being served. Thus the accompanying IEEE 802.11u standard will be required by most mesh networks to authenticate these users without pre-registration or any prior offline communication. Pre-standard captive portal approaches are also common. See the more detailed description below of mesh security.

802.11s started as a Study Group of IEEE 802.11 in September 2003. It became a Task Group in July 2004. A call for proposals was issued in May 2005, which resulted in the submission of 15 proposals submitted to a vote in July 2005. After a series of eliminations and mergers, the proposals dwindled to two (the “SEE-Mesh” and “Wi-Mesh” proposals), which became a joint proposal in January 2006. This merged proposal was accepted as draft D0.01 after a unanimous confirmation vote in March 2006.

The draft evolved through informal comment resolution until it was submitted for a Letter Ballot in November 2006 as Draft D1.00. Draft D2.00 was submitted in March 2008 which failed with only 61% approval. A year was spent clarifying and pruning until Draft D3.00 was created which reached WG approval with 79% in March 2009.

In June 2011 the fifth recirculation Sponsor Ballot, on TGs Draft 12.0, was closed. The Draft met with 97.2% approval rate.[3]

The 2012 release of the 802.11 specification (802.11-2012)[4] directly incorporates Mesh Routing functionality.

A wireless mesh network architecture allowing otherwise out-of-range nodes 1–4 to still connect to the Internet. A key characteristic is the presence of multiple-hop links and using intermediate nodes to relay packets for others.

. . . IEEE 802.11s . . .

This article is issued from web site Wikipedia. The original article may be a bit shortened or modified. Some links may have been modified. The text is licensed under “Creative Commons – Attribution – Sharealike” [1] and some of the text can also be licensed under the terms of the “GNU Free Documentation License” [2]. Additional terms may apply for the media files. By using this site, you agree to our Legal pages . Web links: [1] [2]

. . . IEEE 802.11s . . .

Previous post School of Social Ecology
Next post Royal Commission on Historical Manuscripts